SELAMAT DATANG KE LAMAN WEB DATA RAYA SEKTOR AWAM

Memuat Turun Laman Web. Sila Tunggu

Tip untuk hari ini..

DYNAWEB4 sesuai digunakan untuk pembangunan portal dan aplikasi web dengan cepat dan mudah

Kompetensi



Data Science
Machine Learning and Predictive Analytics
data science analytics learning predictive
  07.07.2020 - 09.07.2020
   MAMPU, Cyberjaya

This course prepares you to take the knowledge gained and apply it to their own respective data mining problems, solving them quickly and easily First part in this course will introduce the overview of a basic analytic process while second part brings in more complicated cases extended from first part The lessons learnt will be applicable to areas such as customer analytics, targeted marketing, social media analytics, fraud detection, predictive maintenance, resource management, etc


Course Objective

  1. Melaksanakan proses penyediaan data yang asas.
  2. Menghasilkan model ramalan.
  3. Menjalankan penilaian kualiti model mengikut kriteria yang bersesuaian.
  4. Mempraktikkan model ramalan analitik yang dihasilkan
  5. Menjalankan proses analitis lanjutan.

Course Outcomes

  1. Perform common data preparations
  2. Build sophisticated predictive models
  3. Evaluate model quality with respect to different criteria
  4. Deploy analytical predictive models
  5. Apply more sophisticated analytical approaches

Course Outline

  1. Overview
    • Business Scenario
    • Analytics Taxonomy & Hierarchy
    • CRISP-DM
    • Data Analytics in the Enterprise
  2. EDA: Exploratory Data Analysis
    • Loading Data
    • Quick Summary Statistics
    • Visualizing Data & Basic Chart
  3. Data Preparation
    • Basic ETL (Extract, Transform, and Load)
    • Data Types and Transformations
    • Handling Missing Values
    • Handling Attribute Roles
    • Normalization and Standardization
    • Filtering Examples and Attributes
  4. Predictive Model’s Algorithms
    • K-Nearest Neighbors
    • Naive Bayes
    • Linear Regression
    • Decision Tree
  5. Model Construction and Evaluation
    • Machine Learning Theory: Bias, Variance, Overfitting and Underfitting
    • Split and Cross Validation
    • Applying Models
    • Optimization and Parameter Tuning
    • Evaluation Methods & Performance Criteria
  6. Additional Workshops
    • Outlier Detection
    • Random Forests
    • Ensemble Modeling

Kembali

Kemaskini : 20 Januari 2025
TOP